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Nonlinear propagation in an ocean acoustic waveguide
John J. Ambrosiano and Daniel R. Plante
Berkeley Research Assoc., Box 852, Springfield, Virginia 22150

B. Edward McDonalda)
Naval Ocean R&D Activity, Stennis Space Center, Mississippi 3 9529

W. A. Kuperman
NavalResearch Laboratory, Washington. DC20375

(Received 11 October 1988; accepted for publication 3 October 1989)

The nonlinear progressive wave equation (NPE) is used to investigate propagation of acoustic
pulses in a shallow ocean waveguide. The nonlinearity is shown to affect transmission and
reflection at a fluid-fluid interface. It is shown that one effect of the nonlinearity is to reduce
the critical angle for total internal reflection from that of the linear case. When loss versus
range for a simple isovelocity waveguide is compared with linear normal mode and parabolic
equation calculations, the nonlinear result shows increased transmission loss as long as the
wave amplitude is significant (an expected result of shock processes), and increased bottom
penetration. Nonlinear aging of the waveform alters the excitation of linear modes in the
farfield.

PACS numbers: 43.25.Cb, 43.25.Jh, 43.30.Qd

INTRODUCTION represents refraction, the quadratic term contains nonlinear

The nonlinear progressive wave equation (NPE) mod- steepening, and the integral term includes diffraction and

el' has recently been developed to investigate nonlinear geometric spreading.
acoustic effects (including shocks). The model is cast in the The error term in (1) is third-order in the smallness
time domain as the most economical method for represent- parameter e, which scales each of {R,c,,V' ,D IDt }, where
ing local nonlinear phenomena. For investigating propaga- the last two items of the list are the transverse Laplacian and
tion in an ocean waveguide, this model provides an alterna- the wave's time derivative in the wave-tracking frame:
tive to the parabolic equation (PE) and normal mode (NM) D = + (2)
approaches. D o O9x

The NPE is derived from the fluid equations of momen- The scaling of D IDt in this context is not an arbitrary
tum and mass continuity retaining lowest-order nonlinearity assignment, but a fundamental result from the equations of
and assuming propagation within a narrow angle. The mod- motion.' This is illustrated by the limit c-0, which brings
el follows a pulse disturbance in a reference frame that moves {c,,R,V2 } to zero on the right side of (1). The appropriate
at a constant representative sound speed co in the range di-

recton x).Thelocl lnea sond pee inthemedium is progressive wave solution is a linear plane wave in a homoge-rection (x). The local linear sound speed in the mduis neous medium, f(x - Cot), with fan arbitrary function. For
c = co + c, (x,y,z) where c, is a small local environmental nyou tion o t om, D i an onit nti th it

depatur fro cConistet wth te P, te NP ca be any solution of this form, D/1Dt vanishes, consistent with it
departure from Co. Consistent with the PE, the NPE can be being scaled by E.
derived from an ordering scheme in which smallness of var- The equivalence of the NPE and PE under appropriate
ious items is formally stated through a scaling variable c. In circumstances has been demonstrated elsewhere. '.2 As with
addition to the PE's list of small quantities, the NPE scales the PE, any term in (1) contributes meaningfully to wave
the wave amplitude by e. The list of scaled items precedes evolution only as long as it exceeds the dominant error term.
Eq. (2). The NPE' is stated as One can reformulate the NPE in terms of a dimension-

DR=- -!± (cR + OR 2~ less pressure variable Qm=p'Ipoco2
Di O3x 2 /

co DQ - (CQ±+ E2
- fV2 R x (1)') Dt Ox \ 2 Q 1)2 X

where R = P'/Po with p' the acoustic density fluctuation and co fV2 Q dX + 0(). (3)
po is the ambient density (assumed constant here) in the 2 J,

medium. The coefficient of nonlinearity is 6- 1 + One recognizes (3) as differing from (1) only in the
0 log c/d log p c. 3.5 for the ocean. The lower limit x of inte- substitution of Q for R. The reason for this symmetry is that
gration in (1) is located in the quiescent medium ahead of Q = R + O(f). Substitution of this expression into (3)
the wave. On the right-hand side of Eq. (1), the c, term leads to an error oforder r' in each term, consistent with (1).

The pressure formulation of the NPE (3) facilitates the han-
"Present address: Naval Research Laboratory, Washington, DC 20375. dling of interfacial boundary conditions.
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In the following sections, we present solutions of the 0 m
NPE for a pulse propagating along an acoustic waveguide
descriptive of a shallow ocean. We will show how nonlinear-
ity affects transmission and reflection at the bottom (repre-
sented by a fluid-fluid interface) and dispersion in the wave-
guide. Viscosity and sedimentary attenuation in the ocean
and bottom are omitted for simplicity (there is, however, a
wave-absorbing buffer zone below to prevent artificial grid
reflections). The physical effects to be investigated here are
not substantially altered by either of these dissipative mecha- Rion 1
nisms. Linear results from our model (,6= 0) compare well 400 m
with existing linear results. Effects evident when nonlinear- Region 2

ity is included are physically understandable. Thus two nec- 480 m
essary conditions at e fulfilled to argue that the NPE is suit- Region 3
able for more complicated investigations as well. ....................................... 600 m

I. SIMULATIONS OF REFLECTION AND TRANSMISSION 2 m 202 m

AT A FLUID-FLUID INTERFACE Rafige 2 m
In this section, we present results of simulations using FIG. 2. Simulation window with initial waveform. The ocean and bottom

the pressure interpretation of the NPE (3). We consider a are fluids of equal density with sound speeds of 1500 and 1600 m/s, respec-

fluid-fluid description3 of the ocean-bottom interface as in tively. The subbottom has the same properties as the bottom, plus numerical
damping to absorb waves reflected from the bottom of the numerical grid.

Fig. 1. The linear sound speed of the water column is c, and The width of the simulation window is 200 m.

that of the flat bottom is Cb = co + c, with c, > 0. Results
are calculated in a reference frame moving at the water
sound speed co, beginning with conditions illustrated in Fig. where subscript ni indicates nonlinear modification. The
2 (more details below). The subbottom has the same proper- shock front propagation speed (normal to the front) is given
ties as the bottom, plus wave-absorbing numerical attenu- by the Rankine-Hugoniot relation as the average of small
ation. Azimuthal symmetry is assumed, signal speeds on both sides of the shock, i.e.,

Before giving the numerical results, we will present a
simple theoretical argument indicating how nonlinearity V, = Co(1 + fQ,) +0(e 2). (5)
should affect total internal reflection at the ocean-bottom The horizontal phase speed of this wave is v, sec a,. For
interface. From simple kinematics, we can derive an expres- this nonlinear problem, we define a critical angle a, such
sion for the critical grazing angle a, below which an incident that the incident wave excites a disturbance in the bottom,
nonlinear plane wave in the ocean fails to excite a nonevanes- which, with increasing depth, approaches a horizontally
cent wave in the bottom. At the critical grazing angle, the propagating linear wave with phase speed c, + c,. Waves
incoming wave barely excites a horizontally propagating with smaller phase speeds are evanescent in the bottom. The
wave deep in the bottom. Without having to solve for nonlin- critical grazing angle is thus given by
ear details at the interface, a necessary condition for excita- c, + c, = Co sec a,. (I + 0Q ). (6)
tion of the wave deep in the bottom is matching of horizontal
phase speeds (i.e., a statement of Snell's law). For this For small Q, and e 1/co, (6) gives
matching, we need a steady-state incoming plane wave. The a, -- 2 (c,/c() -,6Q,. (7)
only such wave with small but finite amplitude is a weak This indicates a decrease of critical angle with the ampli-
shock discontinuity. Mathematically, this wave consists of tude of the incident wave. Thus, a nonlinear wave might be
two constant states Q = 0 ahead of the shock, and expected to disturb the bottom more than linear theory
Q = Q, > 0 behind it. Within the compressed fluid behind would predict. In agreement with this, note that for Q, > 0
the shock, sound waves propagate at an increased speed and cl </3c0Q,/2, there is no real a, (no cutoff angle for the

c,, = co( ! + #Q) + O(W2), (4) nonlinear wave). The sound-speed discontinuity is weak
enough that the nonlinear wave passes through to great
depth for all grazing angles, while a linear wave would be cut

Ocean off at a, _ 2(c/co).
Boundary conditions for the numerical simulations are

as follows. The ocean surface is taken to be a flat pressure
Mi I release surface. The lower boundary of the numerical simu-
L - lation grid (600-m depth in Fig. 2) is a hard wall d, = 0,
Mid, = c, + with reflected waves suppressed by a thick subbottom con-

Boo, c, taining numerical attenuation to be described below. Condi-
tions that must be satisfied at the ocean--bottom interface

FIG. I. Plane-wave incident from ocean to bottom, with c,, < c". Here, c,, is
the sound speed in the water, c,, is the sound speed in the bottom, a,,,, is the (400-m depth in Fig. 2) are continuity of fluid pressure and
grazing angle of incidence (reflection), and a,, r is the angle of refraction. normal particle speed. In terms of the pressure variable Q
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Q,(z) affect results considerably less than the uncertainty in real
ocean bottom density values. Neglecting the nonlinear term,

* the second-order finite difference statement of the boundary
conditions is

FIG. 3. The fluid-fluid ocean-bottom inter- Qwj + Q ,+ = + + Qbj .'
Zj+1 0 o face is taken to be midway between two verti-

cal grid points. Auxiliary values for finite dif- Poh (Qb , b.) -t + . -(
zi 0 0 ferences at the interface (open circles) are

generated from the interfacecontinuity condi- Equation (9) allows the artificial values Q, and Qb, to be
0 tions (9). eliminated in terms of the active gridpoint values. This rep-

resentation of the interface conditions is physically consis-
0 tent with the property that when there is no density discon-

Qb(z) tinuity across the interface, the interface is completely
transparent (i.e., Q., = Qb, and Qb, = Qwj, )

Equation (3) is integrated in time numerically' using
Crank-Nicholson for the diffraction term and flux corrected

(normalized on both sides of the interface by the bulk modu- transport (FCT) methods' 7 for the x derivative. The inter-
lus of water, pc,), the conditions are continuity of Q and facial boundary conditions are included in the tridiagonal
p '0% Q, where d,, is the derivative along the upward normal matrix solution for the Crank-Nicholson scheme.
to the surface. Beneath the bottom, a damping zone is used to absorb

One finite amplitude effect to be included is deformation downward propagating waves that would otherwise reflect
of the interface by the wave. To lowest order the slope of the from the bottom of the grid and re-enter the simulation.
interface deformation is Damping of unwanted reflections is achieved by the addition

of a term - Q/i"to the right-hand side of Eq. (3), where the
.= - 0 JdtJdti '-c7p' purely numerical damping coefficient r varies with depth.

To study internal reflection at the interface, we initia-
= -.,Q dx + O(E'2). lized a pressure perturbation in the water column and al-

lowed it to propagate to the bottom. We considered two

The deformation of the surface normal contributes a nonlin- cases: # = 0 (linear) and f = 3.5, where the latter is an ap-
ear term to the pressure continuity condition for the vertical proximate value for the coefficient of nonlinearity in water.
direction: The nonlinear solutions we present do not include the effects

of cavitation.
Po,, 'dz Q., = p, Iaz Qb - (P,,.- P , The initial configuration and parameters of the simula-

p 'tions are detailed as follows. The ambient fluid density is
XJ da Qb dx + O(e'), (8) taken to be uniform across the interface. The initial pressure

perturbation used in both linear and nonlinear simulations is
where subscripts w and b refer to evaluation on the water and shown in Fig. 2. The perturbation Q is a spherical wave with
bottom side of the interface, respectively. The fractional or- maximum value Q = 0.1 at a radius of 135 m centered about
der in the error term reflects that the NPE scales the trans- a source point at a depth of 200 m. The wave's radial profile
verse Laplacian as e, so that transverse derivatives, e.g., d., is a half sine wave of width 16 m. A pressure perturbation of
scale as c' 2. this magnitude (but not of this shape) may be expected from

The interfacial boundary conditions are represented nu- an underwater explosion. The shape of the wave automati-
merically as follows. The undisturbed interface is taken half- cally relaxes towards an appropriate self-similar profile dur-
way between two vertical grid points zj and z, , , (Fig. 3). ing propagation.' The range variable is x, and depth is in the
The vertical grid may be thought of as partitioned between negative z direction. The grid consists of 100 by 150 points,
water and bottom variables Qw and Qb. Artificial values Q-, with spacing bx = 2 m and z = 4 m. We assume a sound
and Qb,,, are generated from the interfacial boundary con- speed c, = 1500 m/s in the ocean and Cb = 1600 m/s in both
ditions. In this work, we examine effects of a sound-speed the bottom and damping regions. The linear critical grazing
discontinuity across the interface without the nonlinear angle (Q, = 0) from (6) is 20 deg. The timestep is initially
boundary term in (8). In the results presented here, we take 0.01 s and is thereafter adjusted to be no greater than half
uniform density across the interface, Po,, = Po,,, so the non- that allowed by the Courant-Friedrichs-Lewy (CFL) sta-
linear term in (8) is automatically absent. But even allowing bility condition.9

a reasonable density discontinuity, neglect of the nonlinear Some discussion of the starting field of Fig. 2 is in order.
term would bejustified by its smallness, estimated as follows. The NPE, like the PE, is a small-angle approximation; yet
lfpoh = 1.5po,,, and Q., is always less than 0.04 (as will be the the starting field contains large-angle components with re-
case considered below when the wave first hits the inter- spect to the range direction. The feature of the NPE that
face), the nonlinear term on the right side of (8) is initially allows accurate recovery of farfield results is that the large-
less than 1% of the linear term, and this ratio decreases with angle wave components have group velocities less than that
range. Unlike the nonlinearity in (3), its effect does not ac- of the advancing simulation window (less by a factor of the
cumulate during propagation. Retention of the term would cosine of the propagation angle). These components pro-
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gressively fall behind the field of view and do not affect the (c) ] and nonlinear [ 4( d)-( f) ] cases are pictured at fixed
farfield results. times for comparable values of range (defined as the distance

Simulations results are shown in color in Fig. 4, begin- from the source point to the left of the simulation grid). The
ning when the maximum propagation angle has dropped to range values do not match exactly because the timesteps are
25 deg (vertical scale compression by a factor of 3 appears to automatically adjusted during the runs. The color scale from
increase this angle). Pressure perturbations in linear [4(a)- blue to red differs from plot to plot. Reddish hues (yellow

(c) (M
FIG. 4. Color contour plots of propagating pulse at fixed times in pulse following window. Yellow through red are positive, blue-green through violet are
negative, and green is neutral (zero). Linear solution is given in (a)-(c).. nonlinear solution in (d)-(f). Distances from the source point to the left of each
plot are: (a) 452 m. (b) 1352 m, (c) 2252 m. (d) 430 m. (e) 1338 m. and (f) 2207 m.

1476 J. Acoust. Soc. Am., Vol. 87, No. 4, April 1990 Ambrosiano etal.: Nonlinear waveguide propagation 1476



through red) are always positive, bluish hues (blue-green bance is separate from the nonlinear decrease in the critical
through violet) are negative, and green is zero. The white angle). Another physical effect visible in Fig. 4 is that the
horizontal line through the simulation region is the bottom. nonlinear wave propagates slightly faster than the linear
As the wave propagates far from the source, the effective wave. By the time of Fig. 4(c) and (f), the forward edge of
grazing angle with the bottom becomes approximately in- the nonlinear wave has crept forward relative to the coordi-
versely proportional to range. In this regard, our results at nate system moving at speed Co, while that of the linear wave
increasing range show effects of decreasing grazing angle. has remained fixed.

Figure 4(a) and (d) is constructed from simulation The above comparison can be summarized as follows. A
data at 452 and 430 m, respectively, with (a) being linear linear compressional wave incident on a fluid-fluid interface
and (d) nonlinear. The linear wave intersects the bottom at a undergoes a transition from positive to negative reflection as
grazing angle of approximately 25 deg. Since the linear criti- the effective grazing angle drops below the critical value and
cal grazing angle is 20 deg, energy can still propagate into the tends to zero. When nonlinear effects are included, the criti-
bottom for a short while. An obvious difference between the cal angle is smaller, the reflected wave is primarily positive,
two cases is the shape of the waveforms. The propagating the disturbance of the bottom is greater, and pulse propaga-
wave in the linear case maintains its essential half-sine wave tion is slightly faster.
profile, while the nonlinear wave has steepened into a shock
ahead of what appears to be an exponential tail. II. DISPERSION OF A WAVE PACKET

Figure 4(b) and (e) shows the pressure perturbations at A. Normal modes
1352 and 1338 m, respectively. The linear wave's grazing The results of the previous section suggest that large-
angle with the bottom (approximately 8 deg) is now well amplitude waves, such as those resulting from an under-
below critical, and propagation into the bottom has been cut water explosion, will interact differently with the ocean-bot-
off. The nonlinear wave continues to propagate as a sharp tom interface than small-amplitude waves, because of the
front, while the linear wave maintains a rounded profile. At nonlinear contribution to the local sound speed. Because of
this range, the bottom-reflected linear wave is a positive this effect, we expect the dispersion of a nonlinear pulse to be
pulse followed by a negative pulse of approximately equal different than in the linear case. In this section, we present
amplitude. The nonlinear wave has a predominantly positive numerical results using the NPE model designed to high-
reflection. There is a local maximum in linear and nonlinear numea rsls uin e mi
waves near the bottom evident as a red area. Comparing the light some of those differences.
shape and size of this region reveals that much of the nonlin- We consider an idealized shallow ocean like that pic-ear wave's energy resides in the bottom-reflected wave, while tured in Fig. 2. In this case, we assume an ocean depth of 200

ec aril. m together with 200 m of bottom, the lower four-fifths ofthe linear wave's energy is primarily in the direct arrival which is progressively damped to avoid numerical reflection
This is a result of the nonlinear direct arrival being weakened from the lower simulation boundary. At a source depth of 50
by shock processes, rather than a strengthening of the re-fleced ave.(Th colr pot atomticaly escaes ach m, we initialize a five-cycle sine-wave packet "vith a wave-
flected wave. (The color plot automatically rescales each length consistent with a frequency of 50 H. ind limit the
frame to minimum and maximum values for clarity of pre- angular spread to 38 deg. A Gaussian envelope of lie width

Figurei4b) a1.77 cycles multiplies the sine-wave packet. The sound speed
Figure 4(b) and (e) shows the transient behavior of the in the water column is taken to be 1500 m/s and, in theenergy that penetrated the bottom earlier in the wave's evo- bottom, is 1550 m/s. The initial perturbation is then allowed

lution. This energy appears as a finger somewhat ahead of to propagate downrange.
the main wave. Separation from the wave occurs when the Data from a simulated array of 15 hydrophones placed
grazing angle goes subcritical. From this point on, addi- at various downrange locations are stored during the run as a
tional energy does not radiate into the bottom, but runs collection of time series. We ran a linear case (/f = 0) out to
ahead and radiates back into the water column (this is evi- 20 km and repeated the simulation for a nonlinear case
dent from movies made in a similar calculation). Energy (/3 3.5). An initial amplitude Q,,a = 0.2 was chosen to
diagnostics (not shown here) confirm that despite the non- illustrate differences between linear and nonlinear propaga-
linear wave's weakening by shock processes, it has deposited
more energy into the bottom by this time than the linear tion.Normal mode solutions qS to the wave equation for a
wave. We interpret this as being due to a smaller critical harmonic point source of a single frequency at depth z, (for
angle for the nonlinear wave, and discussed above. the case of azimuthal symmetry) are

Finally, we compare the two cases at 2252 and 2207 m
downrange, as seen in Fig. 4(c) and (f), respectively. Dis- q(r,z) = (z0)1u,,(z0)u,(z)H,')(k~r), (10)
turbance of the bottom by the linear wave (c) is negligible, 4 )
while the nonlinear wave (f) still shows some disturbance. where p(z,) is the density at the source depth z, and H 1 is
The bottom reflection of the linear wave has shifted in phase the Hankel function of the first kind. The normal modes
and become mostly negative, as predicted by linear theory. u, (z) are eigenfunctions of the equation
This leads to destructive interference at and below the inter-
face. The nonlinear reflected wave, however, is still substan- d 2 nu (z)/d7? + [k "(z) - k , ]u, (z) = 0. (11)
tially positive, resulting in constructive interference with the In Eq. ( I I ), k(z) = w/c(z) is the wavenumber and k n
direct arrival (this mechanism for increased bottom distur- is the eigenvalue for mode n. The normal modes propagate at

1477 J. Acoust. Soc. Am., Vol. 87, No. 4, April 1990 Ambrosiano et al.: Nonlinear waveguide propagation 1477



.0 F- 50.0 Figure 6(b) shows the readings for the hydrophone array at
20.0 5 km downrange. At this distance, the mode separation is
40.0 incomplete, although there is some indication of modes two

6o.o .and three splitting away from the packet. Further down-
80.0 range at 20 km, the modes have separated, as seen in Fig.

8. 6(c). The dashed lines in Fig. 6(c) indicate approximate
arrival times of normal mode maxima. We can see that the

120.D general appearance of the modes is consistent with the pre-
0140.0 dictions of normal mode analysis. For example, in the sec-

6o.0 ond mode arrival [reduced time 0.20 to 0.25 sin Fig. 6(c)] a
0.0 Mephase reversal is evident along the vertical dashed lines, with

200.o , Md , a null at approximately 108-m depth. Figure 6(d) shows the
amplitudes at each of the dashed-line arrival times as a func-
tion of hydrophone depth.

FIG. 5. Normal mode solution from SNAP. The three modes are shown. The simulated hydrophone data in the nonlinear case

reveal differences from the linear results. Figure 7(a) shows
different speeds and will separate as the pulse propagates these results for a range of 600 m. The most apparent differ-
downrange. The normal modes of the waveguide have been ence is the wave steepening. The individual waveforms are
calculated numerically' and results are depicted in Fig. 5. also more complex. Even though the presence of nonlinear-

Figure 6 shows simulated hydrophone time-series plot- ity does not allow the rigorous mathematical extraction of
ted as a function of reduced time using the NPE model for normal modes, we expect similarity between the cases since
the linear case. Reduced time is defined for each vertical the nonlinearities considered here are weak. After an initial
array relative to the time at which the pulse first arrives at phase in which the nonlinear wave loses energy to shock
the hydrophone array. Figure 6(a) shows the readings at a processes and increased bottom penetration, its interaction
range of 600 m, and clearly there is no mode separation. with the waveguide becomes essentially linear.

RANGE 0.6 km (a) RANGE 5 km (b)
0,0 0.0

-n2.0 -12.0
-24.0 -24.0-3.
U6.0 .31.0-W00a .. 0.0

-72.0 -72.0

_101.0 r.--,.-.,- , -101.11
-W4.0 -14.0

-120.0 -10.0~-3.0.

LIS 0.10 0.11 0.20 0.2 0 0.3 nO 0.3 .0U 0.10 0.1 0.20 0.3 .M0 o.3 0.40 FIG. 6. Numerically simulated hydro-
phone readingsat rangesof (a) 600m, (b)

REDUCED TIME T-R/1.5 (8) REDUCED TIME T-R/1.5 (S) 5 km, and (c) 20 km for the linear case. In
(c), the nine vertical lines are used to
point out the mode structure of the simu-
lated hydrophone data. At a range of 20

RANGE 20 km (C) (d) kin, there is a clear separation of the
0.0 ,,", .I ... ' '.', . 0.0 . ,. .. ,, , modes. In (d), the modes marked in (c)

0 "6o:" J I I , are displayed.
-3.0 -8.0

W.0 • "

-2.0 3.0

41O 4-.00'

.:IL1

- LN 6.10 Lit 555 LO 5 0 M . -m.s0

REDUCED TDM T-2/1.6 (3)
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RANGE O.6 km (a) RANGE 5 km (b)

-12.0 -12.0

-24.0 -24.0

-3.0 -36.0

-48.0 -48.0

r0., -48.0 -80.0

S-2.0-2.
-64.0

-- N..
-10.0-108.0-120.0 -120.0

-132.0 -144.0

-156.0 -156.0

-1 . -16.0
-nn:0 -190.0

-192.0 -s92.0
0. 5 0.10 0.15 0.20 0.25 0.30 0.35 0.39 0.0 0.05 0,10 O.3S 0.20 0.25 0.30 0.35 0.40

REDUCED TIME T-R/1.5 (S) REDUCED TIME T-R/1.5 (S)
FIG. 7. Nonlinear case for the same condi-
tions as Fig. 6.

RANGE 20 km (C) (d)

-24.0 '-25.0

S -35.0

-48.0 .
U) -0.0 -62.5

W -10. 0 0.
- . --10. 12S.0

-180.0 -175.0

-19D.0

- 1 9 2 .0 -2 8 0 .0 '. . I. L • ' .' " L . ." " L L * .
0.00 0.05 0.1O 0.15 0.20 0.25 0.30 0.35 0.0 -

REDUCED TIME T-R/1.5 (S)

With these points in mind, we examine the hydrophone combined effects of shock dissipation and more efficient cou-
data from the simulation of the nonlinear wave shown in Fig. pling with the bottom reduce the amplitude relative to the
7(c) at 20 km downrange. Although the results differ from linear wave. Far downrange, dispersion begins to separate
Fig. 6(c), we can make out the arrival of the three "modes" the wave into normal modes recognizable from linear theo-
as indicated by the dashed lines. Plotting the hydrophone ry. The differences that persist between linear and nonlinear
signal amplitude along the dashed lines yields Fig. 7(d). cases are evidence of nonlinear aging." (A nonlinear wave
Again there is relatively good agreement between these propagating in a nondispersive medium undergoes changes
modes and the results in Fig. 5. An exception is mode I in its profile and in the shape of its frequency spectrum.
identified in the first three dashed lines of Fig. 7(c) and These changes are "remembered" when the wave weakens

* plotted in (d). While the mode profile in the linear case enough to be considered linear.)
agrees favorably with that of Fig. 5, the nonlinear profiles are
different, exhibiting an amplitude maximum at a depth of B. Frequency spectra
about 80 m rather than the deeper 110 m predicted by nor- In the previous section, we examined normal modes of
mal mode analysis. Since these slices in depth are taken near the waveguide by sampling time series from vertical arrays
the front of the propagating signal, this departure from the of points at several well-separated locations downrange.
linear result may be an indication of higher early bottom Fourier analysis of time series at the source depth yields in-
losses in the nonlinear case as compared to the linear case. formation about changes in the frequency spectrum with

The results of the normal mode comparison can be sum- range.
marized as follows. Agreement is good between the eigen- Figure 8 shows frequency spectra for the simulations of
modes predicted by linear theory and the separate arrivals Sec. II A at specific locations downrange for the linear case.
that emerge during propagation of a wave packet in the lin- Throughout the range from 600 m to 20 km, the spectrum
ear NPE calculation. In the nonlinear case, time series of the remains strongly peaked near the initial central frequency of
amplitude sampled near the source depth at a relatively 50 Hz. The Gaussian envelope has its peak at 0 Hz and along
short distance downrange exhibit the steepening expected of with the 50-Hz, five-cycle sine wave forms harmonics at 50-
a weak shock wave. As the nonlinear pulse propagates, the Hz intervals (i.e., 100, 150, 200 Hz, etc.).
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striking contrast. While the predominant frequency remains FIG. 10. Loss versus range for the linear simulations. (a) The NPE
near 50 Hz, the sidelobes containing other frequencies are of ( = 0) (solid) versus the normal-mode (dashed) calculations, while (b)

considerably greater amplitude than in the linear case, par- shows the PE (solid) versus the normal-mode (dashed) calculations. Both

ticularly at the short range of 600 m. This is the stage at agree favorably with the normal-mode solution.

which the wave steepens into a shock, giving rise to high- techniques in the linear regime. We also compare the nonlin-
frequency components. As the wave continues to propagate, ecase ith linear regime.the composition of frequencies changes and begins more ear case with linear predictions.

t eie cae aThe 50-Hz spectral component from Sec. II B is plotted
closely to resemble the linear case. against range in Fig. 10. Shown here are the NPE versus the

C. Loss versus range normal mode solutions [in Fig. 10(a) ] and the PE results
from the PAREQ model'2 versus the normal mode solutions

In this section, we examine loss versus range for a single [in Fig. 10(b) ]. We see that both the NPE and PE models
frequency, benchmarking the NPE against standard linear are in good agreement with the normal mode predictions.

Figure 11 is a comparison of losses between the linear
(a) (b) normal mode solution and the NPE results, including non-

linearity. There is a substantial initial loss of energy that we
attribute to shock processes and to increased bottom pene-
tration. Later, the losses parallel those in the linear case.
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I1. SUMMARY AND CONCLUSION Finally, the consistency of our linear results with the

We have used the NPE model to compare linear and existing literature, taken together with the physical plausi-

nonlinear acoustic propagation in a shallow-water wave- bility of our nonlinear results, lends credibility to the NPE as

guide. Nonlinear effects evident in the comparison are: ( I ) a a suitable numerical/theoretical tool for studying nonlinear

smaller critical grazing angle at the bottom, resulting in en- acoustic phenomena.

hanced transmission of wave energy; (2) energy loss near
the source attributed to shock formation; and (3) nonlinear ACKNOWLEDGMENTS
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